Search results for "active PI"

showing 10 items of 13 documents

Radiation hard monolithic CMOS sensors with small electrodes for High Luminosity LHC

2019

Abstract The upgrade of the tracking detectors for the High Luminosity-LHC (HL-LHC) requires the development of novel radiation hard silicon sensors. The development of Depleted Monolithic Active Pixel Sensors targets the replacement of hybrid pixel detectors with radiation hard monolithic CMOS sensors. We designed, manufactured and tested radiation hard monolithic CMOS sensors in the TowerJazz 180 nm CMOS imaging technology with small electrodes pixel designs. These designs can achieve pixel pitches well below current hybrid pixel sensors (typically 50 ×  50 μ m ) for improved spatial resolution. Monolithic sensors in our design allow to reduce multiple scattering by thinning to a total si…

Nuclear and High Energy PhysicsParticle tracking detectors ; Radiation-hard detectors ; Electronic detector readout concepts ; CMOS sensors ; Monolithic active pixel sensorsPhysics::Instrumentation and DetectorscostsRadiationElectronic detector readout concepts01 natural sciences7. Clean energy030218 nuclear medicine & medical imaging03 medical and health sciences0302 clinical medicinesemiconductor detector: pixelElectronic detector readout conceptCMOS sensorselectrode: designParticle tracking detectors0103 physical sciences[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]InstrumentationImage resolutionRadiation hardeningspatial resolutionradiation: damagePhysicsCMOS sensorsemiconductor detector: technologyMonolithic active pixel sensorPixelirradiation010308 nuclear & particles physicsbusiness.industrytracking detector: upgradeDetectorCMOS sensorParticle tracking detectorMonolithic active pixel sensorsUpgradeCERN LHC CollCMOSefficiencyOptoelectronicsbusinessperformanceRadiation-hard detectors
researchProduct

The Wide Field Imager instrument for Athena

2017

ESA's next large X-ray mission ATHENA is designed to address the Cosmic Vision science theme 'The Hot and Energetic Universe'. It will provide answers to the two key astrophysical questions how does ordinary matter assemble into the large-scale structures we see today and how do black holes grow and shape the Universe. The ATHENA spacecraft will be equipped with two focal plane cameras, a Wide Field Imager (WFI) and an X-ray Integral Field Unit (X-IFU). The WFI instrument is optimized for state-of-The-Art resolution spectroscopy over a large field of view of 40 amin x 40 amin and high count rates up to and beyond 1 Crab source intensity. The cryogenic X-IFU camera is designed for high-spect…

Hot and Energetic UniverseX-ray detector.Electronic Optical and Magnetic MaterialFocal plane cameraComputer Science Applications1707 Computer Vision and Pattern RecognitionCondensed Matter Physic02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesX-ray astronomyApplied Mathematic010309 opticsActive pixel sensorSettore FIS/05 - Astronomia E AstrofisicaWFI0103 physical sciencesAthenaElectrical and Electronic Engineering0210 nano-technologyDEPFETUV, X-Ray, and Gamma-Ray Space Instrumentation for Astronomy XX
researchProduct

ATHENA WFI optical blocking filters development status toward the end of the instrument phase-A

2018

Copyright 2018 Society of Photo-Optical Instrumentation Engineers (SPIE). One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited. The Wide Field Imager (WFI) is one of the two instruments of the ATHENA astrophysics space mission approved by ESA as the second large mission in the Cosmic Vision 2015-2025 Science Programme. The WFI, based on a large array of depleted field effect transistors (DEPFET), will provide imaging in the 0.2-15 keV band over a 40'x40' field of view, simultaneously with spectrally an…

X-ray detectorCosmic VisionPhotonX-ray detectorWide Field ImagerField of viewCondensed Matter Physic7. Clean energy01 natural sciences010309 opticsX-ray astronomyOpticsSettore FIS/05 - Astronomia E Astrofisica0103 physical sciencesAthenaSpectral resolutionElectrical and Electronic EngineeringOptical blocking filter010303 astronomy & astrophysicsPhysicsCMOS sensorbusiness.industryElectronic Optical and Magnetic MaterialDetectorComputer Science Applications1707 Computer Vision and Pattern RecognitionPhoton countingApplied MathematicActive pixel sensor13. Climate actionbusinessDEPFET
researchProduct

The IXO Wide-Field Imager

2010

The Wide Field Imager (WFI) of the International X-ray Observatory (IXO) is an X-ray imaging spectrometer based on a large monolithic DePFET (Depleted P-channel Field Effect Transistor) Active Pixel Sensor. Filling an area of 10 × 10 cm² with a format of 1024 × 1024 pixels it will cover a field of view of 18 arcmin. The pixel size of 100 × 100 μm² corresponds to a fivefold oversampling of the telescope's expected 5 arcsec point spread function. The WFI's basic DePFET structure combines the functionalities of sensor and integrated amplifier with nearly Fano-limited energy resolution and high efficiency from 100 eV to 15 keV. The development of dedicated control and amplifier ASICs allows for…

X-ray AstronomyImaging spectrometerWide Field ImagerField of viewSettore ING-INF/01 - ElettronicaIntegrated amplifierlaw.inventionTelescopeOpticslawWFIDePFETX-ray SpectroscopyInternational X-ray Observatory; IXO; Wide Field Imager; WFI; X-ray Astronomy; X-ray Spectroscopy; X-ray Imaging; DePFET; Active Pixel SensorPhysicsCMOS sensorActive Pixel SensorPixelSpectrometersezelebusiness.industryAmplifierIXObusinessInternational X-ray ObservatoryX-ray Imaging
researchProduct

The Wide Field Imager of the International X-ray Observatory

2010

The International X-ray Observatory (IXO) will be a joint X-ray observatory mission by ESA, NASA and JAXA. It will have a large effective area (3 m 2 at 1.25 keV) grazing incidence mirror system with good angular resolution (5 arcsec at 0.1–10 keV) and will feature a comprehensive suite of scientific instruments: an X-ray Microcalorimeter Spectrometer, a High Time Resolution Spectrometer, an X-ray Polarimeter, an X-ray Grating Spectrometer, a Hard X-ray Imager and a Wide-Field Imager. The Wide Field Imager (WFI) has a field-of-view of 18 ft � 18 ft. It will be sensitive between 0.1 and 15 keV, offer the full angular resolution of the mirrors and good energy resolution. The WFI will be imple…

X ray astronomyNuclear and High Energy PhysicsInternational X-ray ObservatorySettore ING-INF/01 - Elettronicalaw.inventionImagingOpticsObservatorylawAngular resolutionInstrumentationSpectroscopyPhysicsActive Pixel SensorsezeleSpectrometerbusiness.industryAmplifierTransistorDetectorPolarimeterIXOOptoelectronicsbusinessDEPFETIXO; X ray astronomy; DEPFET; Active Pixel Sensor; Imaging; Spectroscopy
researchProduct

Studies for low mass, large area monolithic silicon pixel detector modules using the MALTA CMOS pixel chip

2021

Abstract The MALTA monolithic silicon pixel sensors have been used to study dicing and thinning of monolithic silicon pixel detectors for large area and low mass modules. Dicing as close as possible to the active circuitry will allow to build modules with very narrow inactive regions between the sensors. Inactive edge regions of less than 5 μ m to the electronic circuitry could be achieved for 100 μ m thick sensors. The MALTA chip (Cardella et al., 2019) also offers the possibility to transfer data and power directly from chip to chip. Tests have been carried out connecting two MALTA chips directly using ultrasonic wedge wire bonding. Results from lab tests show that the data accumulated in…

Nuclear and High Energy PhysicsWire bondingParticle tracking detectors ; Radiation-hard detectors ; Electronic detector readout concepts ; CMOS sensors ; Monolithic active pixel sensorsHardware_PERFORMANCEANDRELIABILITY01 natural sciences030218 nuclear medicine & medical imaging03 medical and health sciences0302 clinical medicineModule0103 physical sciencesHardware_INTEGRATEDCIRCUITSWafer[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Silicon pixel detectorsInstrumentationPhysicsInterconnectionPixel010308 nuclear & particles physicsbusiness.industryChipInterconnectionCMOSMonolithic pixel detectorsMALTAOptoelectronicsWafer dicingUltrasonic sensorbusinessHL-LHC
researchProduct

The wide-field imager for IXO: status and future activities

2010

The Wide Field Imager (WFI) of the International X-ray Observatory (IXO) is an X-ray imaging spectrometer based on a large monolithic DePFET (Depleted P-channel Field Effect Transistor) Active Pixel Sensor. Filling an area of 10 x 10 cm2 with a format of 1024 x 1024 pixels it will cover a field of view of 18 arcmin. The pixel size of 100 x 100 μm2 corresponds to a fivefold oversampling of the telescope's expected 5 arcsec point spread function. The WFI's basic DePFET structure combines the functionalities of sensor and integrated amplifier with nearly Fano-limited energy resolution and high efficiency from 100 eV to 15 keV. The development of dedicated control and amplifier ASICs allows for…

X-ray AstronomyImaging spectrometerWide Field ImagerField of viewSettore ING-INF/01 - ElettronicaIntegrated amplifierlaw.inventionTelescopeOpticslawWFIDePFETX-ray SpectroscopyInternational X-ray Observatory; IXO; Wide Field Imager; WFI; X-ray Astronomy; X-ray Spectroscopy; X-ray Imaging; DePFET; Active Pixel SensorPhysicsCMOS sensorActive Pixel SensorsezelePixelSpectrometerbusiness.industryAmplifierIXOInternational X-ray ObservatorybusinessX-ray ImagingSpace Telescopes and Instrumentation 2010: Ultraviolet to Gamma Ray
researchProduct

DEPFET Active Pixel Detectors for a Future Linear e(+)e(-) Collider

2013

arXiv:1212.2160v1.-- et al.

Vertex (graph theory)Nuclear and High Energy PhysicsParticle physicsPhysics - Instrumentation and DetectorsPhysics::Instrumentation and Detectorsvertex detectorComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONFOS: Physical sciences01 natural sciencesHigh Energy Physics - Experimentlaw.inventionHigh Energy Physics - Experiment (hep-ex)Signal-to-noise ratiolaw0103 physical sciencesElectrical and Electronic EngineeringDetectors and Experimental Techniques010306 general physicsColliderPrecision Pixel Detectors [9.3]ComputingMethodologies_COMPUTERGRAPHICSAdvanced infrastructures for detector R&D [9]PhysicsPixel010308 nuclear & particles physicsDetectorFísicaInstrumentation and Detectors (physics.ins-det)Active pixel sensorNuclear Energy and EngineeringHigh Energy Physics::ExperimentVertex detectorlinear colliderddc:620DEPFETPixel detector
researchProduct

Development of the wide field imager for Athena

2015

The WFI (Wide Field Imager) instrument is planned to be one of two complementary focal plane cameras on ESA's next X-ray observatory Athena. It combines unprecedented survey power through its large field of view of 40 arcmin x 40 arcmin together with excellent count-rate capability (>= 1 Crab). The energy resolution of the silicon sensor is state-of-the-art in the energy band of interest from 0.2 keV to 15 keV, e.g. the full width at half maximum of a line at 6 keV will be <= 150 eV until the end of the nominal mission phase. This performance is accomplished by using DEPFET active pixel sensors with a pixel size of 130 μm x 130 μm well suited to the on-axis angular resolution of 5 arcsec of…

PhysicsX-ray detectorCMOS sensorHot and Energetic UniversePixelbusiness.industryElectronic Optical and Magnetic MaterialApplied MathematicsX-ray detectorComputer Science Applications1707 Computer Vision and Pattern Recognitionfocal plane cameraCondensed Matter PhysicX-ray astronomyFull width at half maximumCardinal pointOpticsActive pixel sensorObservatoryWFIAngular resolutionAthenaElectrical and Electronic EngineeringbusinessImage resolutionDEPFET
researchProduct

Phase-locked loops with active PI filter : the lock-in range computation

2016

vaihelukitut silmukatlock-in rangecycle shippingphase-locked loopelektroniset piiritactive PIsimulointimatemaattiset mallitsignal's phase space
researchProduct